
Learning in neural networks:
VLSI implementation strategies

*

.

Tuan A. Duong,  Silvio  P. Eberhardt*,  Taher Daud, and Anil Thakoor
Center for Space Microelectronics Technology

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA 91109

*Dcpartrnent  of Engineering, Swarthmom  College
Swarthmore, PA 19081

ABSTRACT..

Fully-parallel hardware neural network implementations may be applied to high-speed
recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost
self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning
is required not only  to satisfy application requirements, but also to overcome hardware-imposed
limitations such as reduced dynamic range of connections. A learning algorithm may be
implemented in hardware, in which case the application merely  needs to provide training data (for
supervised learning), or the hardware implements only a feedforward operation, in which case
lcaming is under the control of a host computer that applies input patterns and updates connections
according to the error of the measured outputs (i.e. hard ware-in-the-]oop learning). The latter
method is useful if the network only needs to be trained once for an application, since it greatly
simplifies the hardware, but at the cost of greater learning time and the requirement for a host
computer.

Following a review of the emerging hardware implementation strategies for neural network
lcaming  reported in the literature, this chapter details a new architecture and supervised learning
algorithm, cascade backpropagation (CBP). It combines powerful features from other algorithms
such as cascade correlation (CC) and error backpropagation (EBP), and is particularly suited to
problems of image/data classification and object discrimination. CBP is a constructive architecture
in which a neuron (processing unit) is sequentially added to the net, and gradient descent is used to
permanently fix the weights connected to that neuron, both input and output. Each ncw neuron has
connections to the inputs and each preceding neuron’s output; thus each added neuron implements
a hidden layer. The addition of each successive neuron provides the systcm with an opportunity to
further reduce mean-squared error. Because the average number of connections to a neuron is
small, learning is quite fast.

Currently, the system is implemented using analog CMOS VLSI and hardware-in-the- loop
learning. To adapt the architecture for hardware with limited synaptic dynamic range, the maximum
synaptic conductivity associated with later neurons is reduced, thus effectively reducing the
synaptic quantized step size. Simulations and tests with analog CMOS VL.SI hardware suggest that
the system is capable of learning difficult problems (such as 6-input panty and image classification)
with synaptic quantizations as low as 5 bits, as opposed to the 8-16 bits required for EBP and CC
learning algorithms.

1. mPRODUCTION

Modern general-purpose computers allow simulation of almost any neural network

architecture and learning algorithm, and there is little doubt that such simulations in many cases

afford the easiest and most cost-effective approach for neural network applications. However,
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there are major application areas that require or benefit fl om custom neural hardware. Custom

hardware is necessary in cases where required throughput is greater than can be sustained on

available computers, due either to very large network size or the need for short (realtime) learning

or response intervals. At the other extreme, a simple network used in a mass-produced commodity

such as an automobile may only be cost-effective as a single-chip standalone neural system. In

between, one might envision many applications where inexpensive, self-contained “black box”

neural hardware perform tasks such as fault detection, actuator control, and adaptive home

environmental regulation, to name just a few.

The field of neural network hardware is still in its infancy. Perhaps the only well-

established neural hardware is the computer plug-in “accelerator board” that is capable of rapidly

calculating such common neural primitives as multiply-accumulate, while other computational tasks

are performed by the main processor. Despite the fact that dedicated neural chipsets have been on

the market for close to a decade[ 1,2], few custom neural systems have found their way into

commercial products[3,4].  In this chapter we review the most common technologies and

techniques for implementing custom neural systems, and give an example from our own work of

an analog neural system capable of learning. We also stress the point that many of the learning

algorithms that have been developed for computer-based simulations arc not directly compatible

with hardware, and so any hardware development effort must have as it’s centerpiece the

development of a compatible learning algorithm.

The basic task of a neural network hardware (or hardware simulator) is independent of the

implementation technology, and can be divided into the following modes: 1 ) MAPPING a

spccificd neural architecture onto the hardware taking stock of the number of inputs and outputs,

etc.; 2) LEARNING: Calculation and programming of synaptic connections (and possible network

architecture) so that the network will perform desired mappings from input to output; and 3)

OPERATION: Upon application of a complete set of inputs, the hardware must provide the results

for the required input to output mapping.

Let us consider the computational load required by learning, evaluation, and operation. For

serial simulations, the following algorithm applies to many learning methodologies:

1. while (network hasn’t reached desired performance level)

{
2. for (each training vector)

{
apply input vector
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3. for(each layer)

{
4. for(each  neuron in layer)

{
5. for(each  synapse connecting to neuron)

{
multiply activation by synapse weight

accumulate result into neuron’s input

}
calculate neuron’s activation

}

}
read outputs

calculate error at output

perform weight updates

1

}.

Note that the weight update sequence may require many more computations than the operation

pass(loops  3-5), depending on learning algorithm. Due to the nested nature of the loops,

computational load can increase dramatically with increased problem complexity (giving more

Loop 1 passes), increased network size (inc~asing  Loop 3,4, and 5 passes), or complex learning

algorithm (increased computation in the inner loops). For example, a 2-2-1 network requiring, say,

100 passes to learn the exclusive-OR problem (2-bit parity) would require on the order of

(100 training passes) x(4 training patterns) x(2 passes) x(3 layers) x(2 ncurondlayer)

x (2 synap.wsheuron)  = 9600 operations

where it is assumed that weight-update and operation passes have equivalent complexity (2

passes). Applying this simplistic model to 3-, 5- and 8-bit parity, assuming that the number of

hidden units is the same as the number of input layer units and the required number of training

passes incre~scs to 500, 2000 and 10,000, we sw that the required number of operations are,

respectively, 216K, 9.6M, and 983M. It is obvious that larger applications would benefit

tremendous] y if calculations could bc carried out in a parallel fashion.

Nevertheless, the general-purpose computer simulation that carries out these calculations

one at a time is near-ideal in all respects save response time and, in some cases, cost. The

computer can be programmed to implement almost any architecture and any learning algorithm, and
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signals are represented with high’ precision and dynamic range by floating-point variables. The

same is not true of custom hardware: networks are often limited in size, support only certain

classes of architecture, represent signals and weights with limited precision and (possibly) with

large noise components. Thus, the success of a hardware implementation depends critically upon a

judicious balance of the many tradeoffs, involved in selecting a hardware technology, designing

the circuits, fixing classes and sizes of architectures that will be supported, and crafting a

compatible learning algorithm.

While we focus in this chapter on the mosL popular implementation technologies, namely,

complementary metal oxide semiconductor (CMOS) analog and digital, with signals that are

continuous-valued (or quantimd  to many levels), we should mention several other technologies

that have been reported in literature for neural hardware implementations. 0ptical[5],  thin film[6-

9], and charge-coupled device [10, 11] technologies have all been used to implement neural

networks, but require rather elaborate or specialized fabrication processes. A technology that uses

standard CMOS, and that more closely models biological neural “wctware” functions, is pulse-

mode circuits. Pulse-mode networks represent signals by the duty cycle or firing rate of pulse

trains [12- 15]. Weights, however, are generally stored using analog or digital memories. A

primary advantage of pulse-mode circuits lies in their space-efficient processing circuits, which

combine analog circuit characteristics such as few transistors per processing element and fully-

parallel implementations with small-sized transistors. A possible advantage- and the primary

disadvantage- of this approach is that dynamic range is traded off with time. Otherwise, pulse-

mode circuits tend to exhibit the same difficulties as analog networks [16]. Several smaller-scale

pulse-mode networks have been built and furnished with a learning algorithm [13,15].

In the following sections, we hope to give the reader an appreciation of the characteristics

of the more dominant technologies employed for neural implementations, including strengths and

weaknesses that dictate the form of the implementations. Since our discussion of learning requires

addressing details of hardware implementations, hardware is treated first. Issues having to do with

learning, and in particular the incompatibility of many learning algorithms with limited-precision

hardware, arc then discussed. We present in detail a new learning algorithm, CBP, that is

compatible with hardware implementations, and give results from learning experiments conducted

with CBP. In addition, wc describe a further refinement in the learning algorithm and give

simulation results to show that the method is particularly useful for reduced weight resolution, and

therefore, suitable for analog hardware implementations. 4
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2 . DW!&RE OV~VIEW

One key characteristic that distinguishes different implementations is the level of

parallelism. A neural net program running on a personal computer or workstation has no

parallelism beyond engaging integer and floating-point processor units sitnultancously. At any

point in time, the general-purpose processor is calculating one synaptic weighting, the activation

function of one neuron, or one connection-update. Many custom digital implementations (and also

software implementations executing on a parallel computer system) follow this model in a semi-

parallel way: each processing element calculates a subset of the network’s connections and neuron

activations. Throughput is increased by sharing the task over multiple processors. Further gains

may be achieved by designing specialized custom processors optimized for the neural tasks

required. However, there is often a tradeoff between speed of execution, network size, and

generality, so that the more specialized processors are usually faster, but support only a limited

number of architectures and learning algorithms.

The highest level of parallelism is achieved by implementing each synapse and each neuron

as a distinct circuit. While fully-parallel digital networks arc rare in digital implementations, due to

the silicon-hogging nature of digital weighting, aggregation, and activation-function lookup

circuits, full-parallelism is the rule in analog and other non-digital implementations, in part because

multiplexing is more expensive, noise-prone, and difficult in the analog domain. Also, custom

circuits that store weights, perform weighting, and implement neurons tend to be significantly

smaller when implemented as analog rather than digital circuits, because the physics of

semiconductor circuits can be exploited to obtain neural functionalities  in a highly space- and

power-efficient manner [17, 18].

Because both analog and digital technologies have their own particular inherent advantages,

neither has yet come to dominate. The state-of-the-art of hardware implementations can be

abstracted from Table 1, which presents an overview of many of the hardware implementations

that have been prototype to date. For each design, the table includes, if available in the literature,

specifications such as architecture size, speed, and learning algorithm supported. Most of the

features listed in the table will be discussed in the following sections[  19].

Table 1. A comprehensive survey and compilation of the hardware implementations of

neural networks reported in Iiterature[l  9].
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3 . ~ENTATIONS

Digital circuits, because of their high noise immunity and the resulting capacity to transfer

information perfectly intact, are well-suited to time-multiplexing. Partially-parallel systems, with a

handful of custom synapse and neuron circuits can be constructed, allowing a flexibility that is

difficult to achieve in analog technology: a given neuron circuit or synap.sc  multiplier can calculate

one, ten or even thousands of neurons or connections within one pass with parallel processing.

Thus, as long as sufficient memory for weight storage is available, almost any size neural

architecture may be mapped onto a fixed number of processors. Bandwidth, often measured in

millions of connections per second (MCPS) for data pl ocessing  operation, and millions of

connection updates per second (MCUS)  for learning, remains relatively constant for such a circuit.

Thus, the operation throughput, the reciprocal of the time lag between application of an input and

availability of the output, is also inversely related to the complexity of the architecture that is

mapped onto such a time-multiplexed system.

Most digital designs are indeed multiplexed, for the simple reason that a fully-parallel

digital system is impractical for all but small architectures, since each connection in the network

generally requires silicon-hogging multiplier and adder circuits. Also, it would be wasteful to

incorporate into each neuron circuit an activation-function lookup table, when the speed of the

system is limited not by the lookup time, but by the multiply-accumulate synaptic weighting and

aggregation calculations. However, a moderately-large fully-parallel digital system, described

below, has been constructed using eight 5-inch silicon wafers [20].

Another advantage is that digital circuits arc scalable --- as fabrication technologies (which

are often geared towards digital requirements) improve, circuits can bc made ever smaller, allowing

more processors on a chip, while simultaneously decnmsing  execution time. Analog circuitry may

not scale down to the same degree, because noise may increase as feature size is reduced. For

example, transistor edge effects may become more pronounced as transistors are made smaller,

resulting in larger voltage offsets. Also, electromagnetic pickup from adjacent wires may increase

m wires are deposited closer to each other, and larger temperature variations may occur as current

densities and fluctuations increase. As noise levels increase, it can be expected that noise-intolerant

learning algorithms will fail, and that noise-tolerant algorithms will take longer to learn. However,

the analog vs digital trade-off will still be decided based on type of application, requirement of

precision, power consumption, processing time, and silicon real estate.
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Recent innovations in digital design and fabrication technologies have already been applied

to neural networks, making possible several of the larger-scale designs in Table 1. Wafer-scale

integration (WSI) has been used to implement a single i~ltegrated  circuit on a 5-inch diameter

wafer, implementing 576 time-multiplexed neuron circuits with associated synapses, using 40

million transistors [21]. The wafer was mapped with a fully-connected network implementing,

without learning, the 16-city traveling salesman problem. A solution was obtained after only 0.1

s., giving a throughput of 1.2 GCPS (gigs connections per second). An even more ambitious

implementation involved a battery of eight 5-inch wafers as a WSI neural network with 1000

neurons [20]. EBP learning was incorporated into the hardware, giving a maximum weight-update

rate (with all neurons used) of 2 GCUPS. The system was initially used for signature verification

and stock price prediction, and it was found that the hal dware learned 1-3 times as fast as a

simulation running on a Hitachi S-820 supercomputer.  While these two designs illustrate how

rapidly new digital technologies can be adapted to neural networks, note that WSI systems would

be quite expensive, even if masss  produced .

4 . ANALOG IMPLEMENTATIONS

Given the “messy” analog electronic circuit milieu of time-invariant offset voltages and

currents, induced and generated noise, drift, and temperature dependence, it is rather remarkable

that analog networks can be made to function at all! However, biological “wetware” is at least as

noisy a medium, and certainly nature has found a way to overcome the noise effects sufficiently

that neural systems can exhibit highly  discriminatory behavior. Carver Mead has argued that the

physical characteristics of (subthreshold) analog circui~s  model closely those of biological neural

tissue [ 18]. This suggests that once we know the learning algorithms employed by biological

neural systems, wc may be able to directly apply these to analog hardware. Moreover, even with

current analog hardware it appears that collection of noisy and imprecise neurons and synapses can

behave with much higher accuracy than can the individual components [22]. Thus, the challenge is

to find the architectures and algorithms that best learn a task, while reducing the effects of the

underlying circuit nonidealities. However, investigators arc also attempting to “clean up” analog

circuits by reducing noise comj)oncnts,  in one case by automatically canceling offset voltages [23].

Most analog neural implementations developed so far show marked similarities (Fig. 1).

Inputs, coded as voltages to take advantage of a wire’s ability to distribute voltage, are routed to

one multiplier circuit for each synaptic connection. Each multiplier derives the other input from a

memory cell in which is stored that synapse’s weight. Multiplier output signals, representing the

weight inputs for the next layer of neurons, are coded as currents to take advantage of a wire’s
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ability to aggregate currents. Finally, neuron circuits apply a nonlinear activation function to the

aggregated weighted inputs, and supply a voltage. output that can be routed to the next layer of

multipliers, or used as system output.

From this description, it can be inferred thal a primary advantage of analog implementations

is that the aggregation operation is essentially performed by the interconnect wiring, whereas in

digital implementations, each synapse output must be aggregated to the appropriate neuron input

net using one adder time-slot. Another advantage of many analog implementations is that the

dynamic range of analog circuitry is limited by the noise characteristics, not the number of bits, as

in digital circuits. Thus, whereas a scmicustom  digital network may be limited to fixed 8-bit weight

resolution by the designers, analog networks may reach 10 bits of resolution, with stochastic

(noise) effects that may additionally serve to mitigate some of the problems associated with hard-

quantizsd networks and learning. For example, in cases where a neuron is clipped during learning,

a digital weight-update signal to the synapses feeding that neuron may always be zero, whereas an

analog update signal with noi,se may succeed in dislodging the neuron, thus bringing the network

out of a local minimum.

Several primary differences beyond mere circuit detail serve to distinguish

implementations, and have major effects on system performance and capabilities. First and

foremost is network architecture. The architectu~  can eitl]er be fixed, in which case only subsets

of that particular hardwired architecture may be mapped onto the chip, or programming circuitry

can bc added to allow some flexibility in routing synapses to neurons and perhaps controlling the

number of layers in the net. Because such programming circuitry can take up a significant part of a

chip’s silicon real estate, the total number of usable synapses and neurons pcr unit silicon area will

bc correspondingly lower. The most general architecture is the fully-connected recurrent network,

in which each neuron’s output is routed through synapses to each neuron’s input. By setting all

feedback synapses to zero, any feedforward network can be mapped onto this architecture. While

the network is very general, at least half the synapses are unused in a feedforward network, and

likely many more, since it appears that many synapses are unnecessary even in feedforward

networks [24].

A paradigm that has proven popular is the building-block approach [25] , where several

chips can bc interconnected in different ways to obtain a good measure of architectural flexibility.

For example, synapse arrays can be implemented on independent chips, or each chip could

implement onc layer of a fecdforward  network. Large networks could bc constructed by tying
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many chips together. Disadvantages of this approach are the added chip and interchip  wiring costs,

and the throughput penalties resulting from the capacitances associated with chip pins.

A second difference lies in the method used to store connection weights. Currently, three

mechanisms am being exploited: digital memory with analog converter, capacitive charge retention,

and floating gate. While digital weight storage does not have the drift problems of the other

methods and allows fast downloading from computer, it is space-intensive. since a digital-to-analog

converter (DAC) must be furnished on-chip for each weight, and resolution is limited to about 6

bits [24,26]. Storing weights as charge on capacitors [27] is relatively space-efficient, but requires

that leaked-off charge be periodically replaced, either by interspersing learning cycles with

feedforward passes [28,29], or by storing weights digitally and sequential y refreshing the charge

using one or more off-chip DACS [30]. Finally, floating-gate memories [1,31] store charge with

non-volatility using electrically erasable programmable read only memory (EEPROM)  tcchnolog  y.

The charge can be non-destructively and continuously monitored by special  transistor structures.

Charges are added or removed by quantum-mechanical tunneling, a process that is slow and may

require voltages that over time damage the storage device. Nevertheless, floating-gate memories

hold much promise for single-chip standalone neural networks with on-chip learning, particularly

where fmt lcaming is not required.

Finally, the last major factor distinguishing analog learning implementations is support for

learning. On-chip learning support ranges from none, as is the case with feedforward hardware

networks where learning is executed solely by computer, to sophisticated stand-alone systems

where the learning portions of the chip may far exceed in size the feedforward execution portions.

This topic will bc pursued extensively in a later section.

Let us consider in greater depth a typical analog implementation. The majority of analog

designs to date have used the charge-storage mechanism for weight memories, with a sample-and-

hold gate controlled by select logic, as shown in Figure 2. External address lines are decoded to

allow random access of a synapse. This closes the sample-and-hold for that synapse, and allows

the voltage from external computer-controlled digital-to-analog converters (DAC) to be applied to a

capacitor that stores the weight. (Thus, strictly speaking, the weights are actually stored in the

computer’s memory in high-resolution binary form, and the capacitors just serve as a temporary

store.) The altcmate  capacitive memory meehanism, which is employed by networks that must

periodically learn in order to refresh weights, employs circuits that add or extract a quantum of

charge from the capacitor [32]. In either case, the weights are applied to a multiplier circuit that

continually performs the weighting function. Unfortunately, multiplier circuits require a number of
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sizable transistors if linearity, uniformity between circuits, and a large dynamic range are desired,

limiting synaptic circuit density to the order of 10~- 10d synapses pm cmz. Since number of

synapses is the limiting factor determining the size of most fully-parallel networks, the usc of

simpler nonlinear multipliers has been proposed, along with a learning scheme tolerant of the

nonlinearities [33]. Fairly linear response has also bem  obtained using simpler weighting circuits

[34]. Synaptic outputs, coded as currents, are simply and highly efficiently aggregated by the

wires that connect them to their corresponding neuron input. Analog semiconductor physics can

also bestow an advantage in the neuron circuit --- a sigmoidal  activation function can be efficiently

implemented by little mom than a differential transistor pair.

Let us highlight just two of the significant numbel of analog implementations that have

been developed. (Additional citations are given in the section on learning, below). One AT&T

neural system is particularly interesting because it is an analog-digital hybrid that is being used for

character recognition [35]. With a recognition rate of onc hand written character every millisecond,

the system was faster by two orders of magnitude than a (serial) digital signal  processor (DSP)

optimized for neural calculations. A 20x20 pixel image was applied to 4 network layers mapped

onto an analog chip that implements 130,000 connections, and a f~nal 5th layer was implemented

serially on a DSP using an additional 3000 connections. l~arning  wm performed off-line by a

workstation, and weights were downloaded to the system’s memories. The analog network used

the capacitor-charge method for buffering weights. Weights were quantized to 6 bits, and neuron

activations wcw represented with only 3 bits, including sign, The relatively few quantization  levels

necessitated a final learning step where the weights in the final layer wcm retrained on-line. The

recognition error rate was 5.3Yo, as compared to rates of 4.9% and 2.576 for full dynamic-range

simulations and human subjects, respectively.

Onc of the earlier commercially-available products was the Intel’s electrically trainable

analog neural network (ETANN) chip, released in 1990 [36). Each ETANN  80170W chip

comprises 64 neurons and 10240 floating-gate synapses onto which can bc mapped recurrent or

multi-layer fecdforward  networks. The chip must be plugged into a socket on a development

system for learning, using onc of the many supported learning algorithms. While learning is slow

duc to the floating-gate technology, ETANN has nevertheless heralded the age of program-rarely,

moderately-sized, standalone analog neural network chips.
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At the Jet Propulsion Laboratory, we have developed a variety of “building-block” chips,

some of which use digital weight storage, and some of which use capacitor storage [26,30].

Learning has been demonstrated with both these designs [24,37]. In this chapter, we highlight one

of the chipsets, which incorporate hybrid multiplying digital-analog convertor (MDAC) synapses,

on which we have implemented learning. Each synapse (Fig. 3) consists of a 7-bit digital memory

that can be randomly accessed by a host computer, a 6-bit digital-to-analog converter using scaled

current mirrors, a circuit to convert the input voltage to a current in order to drive the converter’s

current mirror network, and a programmable current-steering network such that the synapse can be

programmed to be excitato~  or inhibitory. Each synapse circuit is 200x200pm in a 2~m CMOS

fabrication process.

The neuron circuit is slightly mom complex (Fig. 4). To avoid a speed penalty resulting

from having to charge and discharge large summing-node capacitances (especially if the.se nodes

are routed between chips), the potential of each current-sunlming  “net” node is held constant by the

corresponding neuron circuit. This is achieved by the neuron’s input stage: a differential transistor

pair Q] 9-Q20 amplifies the deviation of the summing node from grouncl  (i.e. half the 10V power

supply potential), and causes the generation of a current that opposes the sum current, forcing the

potential of the sum node to remain at ground. This compensating current is mirrored, inverted,

and applied to an output transimpcdance  node. The transimpedance,  and thus the neuron’s

sigmoidal slope (i.e. gain), can be controlled over a wide range by a programmable current mirror

circuit (Q 14). Programmable neuron gain is useful for normalizing the neuron’s response for the

number of input synapse connections [30,38]. This design  resulted in a wide range, variable gain

neuron.

These circuits were combined on two chips with two types of architectures. One type

implements a 32x32 crossbar network of 1024 synapses; the other is silnilar except that the main

diagonal consists of neuron circuits. These two types of chips can be cascaded and programmed to

form larger, fully -conncded,  partially-connected, or feedforward layered networks. A variety of

network architectures (with standard synapse and neuron characteristics) can be constructed with

this chipset. To map a fecdforward network onto a chipsct that is wired to be fully-connected, all

synapses leading to a previous layer are simply nulled.  Respective synapses on two chips can even

be paralleled together to increase the number of synaptic c~uantization  steps[38];  the outputs of the

two synapses are wired in parallel, and the synapses on the chip with the most-significant bits are

provided with 64 times the transconductance of the respective synapses with less significant bits.
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At the Jet Propulsion Laboratory, we have developed a variety of “building-block” chips,

some of which use digital weight storage, and some of which use capacitor storage [26,30].

Learning has been demonstrated with both these designs [24,37]. In this chapter, we highlight one

of the chipsets, which incorporate hybrid multiplying digital-analog convertor (MDAC) synapses,

on which we have implemented learning . Each synapse (Fig. 3) consists of a 7-bit digital memory

that can be randomly accessed by a host computer, a 6-bit digital-to-analog converter using scaled

current mirrors, a circuit to convert the input voltage to a current in order to drive the converter’s

current mirror network, and a programmable cur-rent-stem-kg network such that the synapse can be

programmed to be excitato~  or inhibitory. Each synapse circuit is 200x200pm in a 2~m CMOS

fabrication process.

The neuron circuit is slightly more complex (Fig. 4). To avoid a speed penalty resulting

from having to charge and discharge large summing-node capacitances (especially if these nodes

are routed between chips), the potential of each current-summing “net” node is held constant by the

corresponding neuron circuit. This is achieved by the neuron’s input stage: a differential transistor

pair Q19-Q20 amplifies the deviation of the summing node from ground (i.e. half the 10V power

supply potential), and causes the generation of a current that opposes the sum current, forcing the

potential of the sum node to remain at ground. This compensating current is mirrored, inverted,

and applied to an output transimpcdance  node, The transimpedance,  and thus the neuron’s

sigmoidal slope (i.e. gain), can be controlled over a wide range by a programmable current mirror

circuit (Q) 4). Programmable neuron gain is useful for normalizing the neuron’s response for the

number of input synapse connections [30,38]. This design resulted in a wide range, variable gain

neuron.

These circuits were combined on two chips with two types of architectures. One type

implements a 32x32 crossbar network of 1024 synapses; the other is similar except that the main

diagonal consists of neuron circuits. These two types of chips can be cascaded and programmed to

form larger, fully-connected, partially-connected, or feedforward layered networks. A variety of

network architectures (with standard synapse and neuron characteristics) can be constructed with

this chipset. To map a fecdforward network onto a chipset that is wired to be fully-connected, all

synapses leading to a previous layer are simply nulled.  Respective synapses on two chips can even

be paralleled together to increase the number of synaptic quantization  steps[38];  the outputs of the

two synapses are wired in parallel, and the synapses on the chip with the most-significant bits are

provided with 64 times the transconductance of the respective synapses with less significant bits.
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Sign bits are programmed together. While the response of such stacked synapses may not increase

monotonically with binary weight count, it is advantageous with some learning schemes to have

the additional levels of weight quant.hation.

4 . 2 A Te~ Of The Future: 3-II Die s-.*

JPL is currently evaluating an approach that may allow the construction of very large

analog or analog/digital neural systems. Noting that size of the VLSI networks is often limited by

available silicon area (where area, in turn, is constrained by increasing cost and decreasing

reliability as die size increases), the possibility exists that functioning silicon dies can be

interconnected by stacking to form compact, three-dimensional structures. A cube, constructed

from scores of thinned dies, occupies approximately the. same footprint as a standard die. In

addition to the tmmcndous processing power afforded by such a de.n.sc integrated circuit (IC) cube,

hybridization of a 3-D IC stack to an image sensor array would enable spatially parallel signal

processing to be performed on image data at extremely high data rates. As shown in Figure 5, an

architecture has been conceptualized which combines the spatially parallel 3-D imager cube with

neural network processing for the first time, promising tremendous speed and network size

enhancements over conventional 2-D VLSI techniques[39]. While the feasibility such stacking

technologies has been demonstrated [40], many challenges must be faced in developing such a

cube, including heat control, the development of software tools that can follow connections in the

third dimension, and, of course, the development of an appropriate neural-based architecture.

A particularly challenging application that requires the tremendous processing capability

afforded by such a 3D neural image processing cube is missile defense, which specifies spatial-

temporal recognition of both point and resolved targets at extremely high speed (milliseconds). A

mconfigurable neural network architcctumz  properly trained, may discriminate targets from clutter

or classify targets once resolved. By mating a 64 x 64 image sensor to a stack of 64 neural net ICS

so that each row in the imager array is attached to one IC, each with a different set of weights, a

variety of image processing tasks could be performed in parallel at extremely high speeds and in an

extremely small package. Neural network inputs could be controlled by a sequencer circuit that

controls signal flow along 64 common bus lines. A novel .sequenccr circuit comprises a switching

matrix that allows a small window (e.g. 8 x 8) from the imager  to be input to any IC in the stack.

In order to limit power dissipation to about 2 watts for the entire IC stack, the synapse and

neuron circuits described above were redesigned to support lower operating currents and power

supply rails, and a concomitant four-fold speed increase. ‘1 ‘he expected computation rate for a 64-
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die stack incorporating these synapses and neurons would be 10lz connections per second, and

could be increased to 1018 CPS when a 1024x1024 focal-plane array imager  becomes available and

as the 3-D stacking technology matures further. The synapse circuit is similar to the earlier version,

except that it utilizes single transistor current mirrors rather than the cawode current mirrors of the

previous design. The neuron circuit, shown in Fig. 6, consists of a very simple variable gain

transconductance operational amplifier without compensation capacitor. Neuron gain is varied by

adjusting the amplifier bias current. Figure 7 shows the two-quadrant synapse output

characteristics of the hardware as a function of stored weights with the voltage Vh as a parameter.

The combined synapse-neuron characteristics are shown in Figure 8 as a family of sigmoidal

curves with different slopes obtained by variation of the gain voltage. These circuits were modeled

with a PSPICE circuit simulation tool and experimental results correlate closely with simulation.

Simulation results indicate an average power consumption of less than 30 milliwatts/chip (or less

than 2W for a 64-chip stack) at the 4 MH7, operation rate.

5 . LEARNING IN HARDWARE SYSTF~

A general-purpose computer can be programmed to execute any reasonably-sized

architecture and any conceivable learning algorithm. The dynamic range of weights and signals

traversing the simulated network, coded with floating-point variables, is sufficiently large that

quantization effects very rarely affect learning or operation. Unfortunately, the opposite is true of

most analog or digital hardware implementations: signals and/or weights must be implemented with

limited quantized levels of resolution and dynamic range. Studies suggest that for most learning

algorithms a reduced dynamic range will adversely affect (or even inhibit) learning. For operation,

however, reducing the dynamic range of weights and signals to a few bits often does not greatly

affect the rtsult  [17,41]. A dire~t  implementation of the ever-popular EBP algorithm, for example,

requires 12-16 bits of weight quantization  [42]. However, major modifications of EBP may

function reliably for at least some problems with as few as 8 bits of weight precision [43].

Learning with analog hardware poses a second challenge: how to structure a learning

algorithm to be less sensitive to the noise sources inherent in analog circuits Such sources can be

dynamic, with wide-ranging frequency components (including low-frequency drifts), or time-

invariant, as in the fixed offset signals generated within every analog circuit. Furthermore, noise

sources are not necessarily uncorrelated: noise in power busses may affect circuit outputs in

diverse ways. As mentioned above, noise can in some cases assist learning by introducing a

stochastic component to weight updates. However, offsets can be a major problem, as can

correlated noise sources.
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Thus, a primary challenge that faces the hardware designer is finding a hardware-

compatiblc  learning algorithm. We will focus here on a few leading examples of supervised

learning algorithms that appear to be most promising for hardware lcarning[44]. For the many

applications that do not require fast learning (including situations where the weights are fixed for

the life of the network), learning may be under the control of a computer. Digital networks of

modest size can often be faithfully simulated using floating point variables, and the resulting

weights can be quantized and mapped onto the hardware. Such an approach may not work for

analog networks unless offsets and other noise sources are measured and incorporated into the

simulation. Instead, a simple but time-intensive gradient-demmt  method that has been employed is

hardware-in-the-loop learning (HILL) [28,45-47]. HILL systems use a computer to set the analog

input values to the hardware, measure the outpu~s,  and reprogram weights. A training token is

applied to the network, and the output is compared to the target vector. Each neuron output or

weight is in turn perturbed, and the effect of the weight perturbation on the output error is

calculated. The weight is then rnodilled  slightly so as to decrease the error. Obviously, this is a

highly inefficient learning method, even if several simultaneous weight updates can be made at

once. Nevertheless, the advantage of this scheme is that all time-invariant noise and other nonideal

hardware behavior is taken into account, including even altogether malfunctioning circuits.

Other investigators have included circuits for learning on-chip. A computer may still be

necessary to apply training vectors, but learning can usual 1 y proceed much more rapid] y due to

higher weight-update parallelism, and faster learning cycles. While many investigators have

designed and even partially implemented analog networks with on-chip learning, using supervised

learning algorithms such as EBP[29,48-52]  and other gradient-descent techniques [53], or

unsupervised learning algorithms such as Oja’s rule [54] and Kohoncn networks [55-57],

relatively few functional analog on-chip learning systems (beyond limited prototypes) have been

reported. Pioneering experiments with small networks capable of lcaming  were pursued starting in

the 50’s by Widrow [58], using his madaline learning mechanisms. Alspcctor  has successfully

executed several designs, using (stochastic) Boltzmann  Laming [59]. His more recent stochastic

system used controlled noise sources in the form of digital circuits that generated random

bitstreams with low correlation [60,61], rather than the uncontrolled sources inherent in the analog

circuitry. Finally, a more specialized analog implementation used Grossbcrg  self-organized

learning [62]. Digital on-chip learning networks have also been implemented, generally with EBP

lcaming  variants [3,19,63]. Onc noteworthy neural chip with a measured time for a fecdforward

pass of only 104 ns used a variant of restricted-Coulomb energy (RCE) learning [64].
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6 . VOLVING ARCHITECTUR1 S.. L

Most learning algorithms operate on a fixed architecture that has been predetermined, often

using little more than guesswork. The problem is that the network size required for a given

problem is dependent on the complexity of the input data set and the structure of the patterns to be

extracted. These factors are generally unknown. If the selected architecture is larger than r~uired

for a particular problem, learning may take longer  than necessary, and if the selected architecture is

too small, the network will not adequately learn the task at hand. To avoid the necessity of fixing a

network architecture, and to obtain higher efficiency in learning, a new class of learning

architecture has been proposed in which a network evolves out of a si mplc two-layer precursor

architecture. Hidden units are added as necessary until the network performs adequately.

The first such architecture appears to be Scott Fahlman’s  CC learning scheme [65]. The

precursor network has no hidden units, and weights are adjusted using the gradient descent (or one

of its varian~s).  Then, in each subsequent operation, a new single-neuron layer is added, with the

neuron’s inputs connecting to the network inputs as well as all hidden-unit neuron outputs.

Initially, a new neuron’s output is not connected, and the input weights arc set so as to maximize

the covariance between the new neuron’s output and the residual error of the network output.

These input weights arc not altered after this. Finally, all output-layer weights are retrained using

the delta rule. In this way, each new neuron serves as a feature detector that is likely to reduce the

output error, and which can be used by subsequent neurons for more sophisticated features. A

final advantage is that the rate of decrease of error with each new hidden-unit addition can serve to

indicate the utility of adding further units.

Such an architecture has a number of attractive features for usc with hardware

implementations. Besides the advantages deriving, from al chitectural  efficiency, such as efficient

network siz~ and use of a small network for at least part of the training task, each of the two steps

of the learning algorithm requires updating relatively few synapses. Furthermore, an error signal

does not need to be propagated back across multiple layers - a process that is highly noise-prone in

analog implementations.

A study of the .scnsitivity of CC learning to reduced dynamic mnge variables and weights

has shown that while the algorithm is relatively insensitive to representing neuron activation by

even as few as 5 bits of precision, weights must be represented with a much greater dynamic range

[41 ]. The 6-bit parity was one among various problems studied in simulation, where the limited

weight precision led first to an increase in network size, then catmtrophic failure below about 12
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bits as weight updates were mostly truncated to zero. Modifications of the algorithm that included

probabilistic weight update resulted in successful learning, with as few as 7 bits [41]. However,

these modifications would bc expensive to implement in hardware.

6 . 1 cade Back~ro~t1 i o n  (CBP) l,earni~ Archltec@_.. r~

In this section we develop a new self-evolving architecture that is highly efficient with

respect to hardware implementations, and demonstrate its ability to learn with reduced synaptic

weight dynamic-range. This new learning architecture is termed CBP and it is shown in Figure 9.

In comparison with EBP, CBP was designed with a clear motivation to avoid the arbitrary and

predetermined assignment of hidden units, and thus avoid identical subspaces  in weight-space that

may cause convergence problems[66]. In addition, its most important feature is the capability to

reduce the weight resolution requirement of EBP, which is particularly costly to implement in

hardware [42]. Further, the theory of self-evolving architecture shows that each added hidden unit

potentially reduces the energy level, which continuously moves the network towards minimum

energy level [67].

CBP uses the stochastic gradient descent technique and the self-evolving architecture [65].

The process of adding a new hidden unit is based on a number of fixed iterations. Learning is

required for the synaptic weights that am related to the new hidden unit and the output bias weights

only. However, in this study, we have not optimimd the number of iterations that may he required

to learn the input-output relationship for the particular problcm.

6 .2 athematical Model

We first define some variables as follows:

p is the” variable for the number of training patterns, where p = { 1,...P };

o is the variable for the output components with o={ 1,...0};

X. is the bias input which is kept fixed at 1;

xj is the input signal with j={ 1...Ni );

xh(l ) is the output from hidden unit 1 with 1 ={ Ni+l  . ..Ni+n }. Here, Ni represents the input

dimension, O the output dimension, and n is the number of” added hidden units (or the expanded

input space). The energy function can, therefo~,  be written as:
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Ut T be the target matrix, with a column for each input target pattern, given by:

and, the corresponding actual output matrix is:

Y=

b’-d
Then, with no hidden units in the network, one can calculate the output  as:

Y = F(WX)

and let WiO be the set of weights between input and output matrices.

of the given energy function (1) in afline space is calculated as:

Wio = F- l(T~+

(2)

The best estimation weight set

(3)

with X+ as the pseudo inverse of X[68], and F] as an inverse transformation matrix given by:

f ‘(t;) j- ‘(t;) . . . f ‘(f;))
F- ‘(~) =

f ‘(i)) j- ‘(2)) . . . f ‘(t:)

The set of weights WiO is then kept frozen. Assume that n hidden units arc added, and the output

is calculated as follow:

y. = $(neto) (4)

where,
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Ni+n N;

net. = E x*(lM~  + E ‘ j w j .  ;
l=Ni+l j=O

and f is the transfer function of the output neuron (termed f{)). Further,

X*(1) ‘j(nf?fh(l)) (5)

where, f is the transfer function of the current hidden  neuron (termed fh and is equal to fO),

Ni+l-1 Ni
net,(l) = Z X~(W*I + Z ‘jwjl

k=Ni+l j=O

and,

Let us define:

f,(l) = df(neth(l))
dneth(l)

; and,

df(neto)
fO =  d n e t

0

With q as the learning rate, the stochastic gradient-descent gives the weight update as:

(6)

whcm, i and j denote the starting node i and the destination node j. And, applying the chain rule to

Eqn. (6) for the weights between the hidden and the output neurons, and the bias synapses

connected to the output, we get:
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which can be written as, (we arv only intemted in the new hidden unit),

~
awti

= –2(% – y:y:xf(n) (7)

Using I@ (7), we can rewrite I@ (6) explicitly with a first order and a second order term[69] as:

which gives the weight updates for the synaptic components between the currently added hidden

unit n and the output o as shown in Figure 10. Similarly, the updates for the weights between the

inputs (including expanded inputs and the bias weight at the currently added hidden unit) and the

current hidden unit are given by:

which then can be written as,

This equation is similarly written in an explicit form with a first ordcx and a second order term as:

for the weight components. The change in learning rate after addition of each new hidden unit is

given by:

n *a+, =  %U –  
#Of iterations— . (lo)

with V.H as the current learning rate, qOJd as the previous learning rate, ar~d c as a constant. When

tx is zero, we obtain the first order gradient descent and if a is a nonzero constant, then the two

19



terms in both the Eqns (8) and (9) contribute to the weight updates and the second order gradient-

descent is obtained.

6.3 Quantiwion of We ight _

Because of the limited quantization  weight space, the value AW~ of the weight update will

have to be modified to AW*U to fit with the available quantization.  The closeness between them

will depend on the weight resolution available. Let nbit be the bit resolution of the weight space.

Then the maximum level of weight space will be MAXLEVEL =2@@  -1. We define stepsize(n)

to be a step size for the weight space of a hidden unit n . The stepsize(n) can be generated from a

constant stepsize(0) which is fixed before starting the learning process. The srepsize(n) is obtained

as follows:

r

E
stepsize(n ) = stepsize  (0) --& (11)

o

with ~ as the energy of the network without any hidden units or the bias input added (includes

only the input to output weights calculated using pseudo-invme  technique), i.e.,

E. = ~ E’(W $P”YP)10 ~‘=1

and the energy ~.l is the energy of the network with n-1 hidden units added. There arc two ways

to obtain the number of steps for AWij: one is the round-off technique where the number of steps

are calculated as follows,

r

#stepi =

(int)(
AWti

stepsize~

\

(int)(
AWti

stepsize~

+ 0.5) ifAWti >0

- 0.5) ifAWti <0

(12)

and the other is the truncation technique for the calculation of the number of steps as below:

#stepi = (int)(ste~$’~(nj)

2 0

(13)



Before updating the candidate weight using AW*U , onc must ensure that the final quantized

weight will not exceeded the limit provided as MAXLEVEI.. Therefore, firs[ the previously stored

weight is converted to an equivalent number of steps, which is given by:

Then,

AW; =
o if (#stepi + #steps) > MAXLEVEL
stepsize (n )(#stepi ) otherwise

(14)

(15)

6.4 Procedure for Learnirw in Hardware

A clear procedure for the learning algorithm, used for solution of a 6-bit parity problem, as

an illustrative example, is presented below.

Based on the mathema~ical  analysis of the EBP learning algorithm [69], the weight update

(consisting of the first and second order terms) can be performed by incorporating (i) either the

first order term only; or (ii) the summation of the two tem~s  to obtain the second order effect as

well. The idea of this development effort, of course, is to make the algorithm implementable in

hardware given the limited synaptic weight resolution.

When considering the transfer characteristics of a neuron, a mathematical equivalent of

sigmoid such as a logistic function is considered or a look-up table is constructed. A look-up table

requites step updates and hence a quantization  of the values. It has been shown that such a neuron

quantization  is not as sensitive as synaptic equalization [41,42] for the convergence properties of

the circuit. In addition, the density of synapse on a chip is much higher than that of neurons.

Thus, it is important to keep the synapse quantization as low as possible, commensurate with

proper learning. Therefore, in our study, the effect of neuron quantization  has not been

considered. On the other hand, synaptic weight quantization  is known to affect the sensitivity of

learning to a larger extent, and the synaptic weights in hard ware maybe limited in their resolution

any where from 5 to 10 bits.
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6 . 5  Weight  U~ date Iss\l@&

The weight update Awti is obtained as an analog number. However, the weight space is

discrete in a hardware based on hybrid digital-analog synapse designs as is the case with our
MDAC approach described earlier in Sec. 4.1. Therefore, to update the weight, the value Awti

must be converted into the number of steps by which the weight is to be updated before it is

summed into the weight component. The conversion from an analog level to the respective discrete

level results in some losses due to quantization.

In A/D conversion technique, typically, there are two conversion schcmcs:  (1) Round-offi

and (2) Truncation. In our simulation, we have compared these two schemes for their

effectiveness in learning. We find that the round-off scheme works better in terms of convergence,

especially when only the first order term in the weight update is considered. During learning

phase, one must also consider the constraint of discrete levels limited by the available weight

resolution. For example, with an 8-bit synapse, the number of discrete levels should not exceed

255.

Some of the salient features of our new learning algorithm arc:

1. The step sim is dynamically changed after addition of each hidden unit. The change is

based on the level of energy left over in the previous hidden unit (as a ratio of the original

level of energy). In general, with the addition of a new hidden unit and subsequent training

of the nxpcctive  weights, the energy of the network decreases, resulting in smaller step

size for the next stage  of added hidden unit. However, in the present simulation for the 6-

bit parity problcm, the maximum number of hidden units added was limited to twenty

irrespective of whether each additional hidden unit decreased the energy or not, or whether

the network converged to the right solution.

2. The input to a neuron can be adjusted using two variables beside the input to the synapse

itself. One is the weight value  which can be updated during training, and the other is the

bias itself to the synapse. It is this latter feature that allows for easy adjustment of the step

size and, more importantly, promotes convergence with lower quantization of synaptic

weights. Furthermore, this new design will provide independent, programmable, bias

voltages to rows of synapses connected to each hidden unit.
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7. E 6 BIT PARITY PRO. BLENl

To assess the effectiveness of our methodology, and for easy comparison with other work

reported in literature, we selected to study the 6-bit parity problem using our new CBP learning

algorithm. The 6-bit parity problem has 64 discrete patterns to be classified. The neural network

architecture has 6 inputs and one bias line directly connected to one output line through seven

programmable weights. The procedure used for training is as follows:

1. Calculate the six weight values for the input-output connection weights using the pseudo-

inverse relationship. In this particular case, the soI ution of the p,seudo-inverse  calculation

is very close to zero. Therefore, we have arbitrarily set all the weights to 0.5. These

weights am then kept frozen throughout.

2. Provide the input patterns (with bias weights not connected) and evaluate the respective

output errors and calculate the energy E(0). If the errors are within a given tolerance, then

the training is complete. If not, proceed further.
3. Set a learning rate, q =3.5 and rx = 0.9 for second order effects and cx = O for first order

effects respectively, and a weight step size given by:

stepsize(0) = 0.015*2@-~b@; where nbit = synaptic weight resolution in bits.

4. Add a new hidden unit along with randomly selected input and output weights, including

the bias weights. These weights have to be converted to quantized levels of weights where

each weight = stepsize(n) * (#steps.) Further, #stcpa should bc an integer given by either

round-off or truncation method.

5. Again provide the inputs, measure the output, and evaluate the new error values for all the

input pattcms to ascertain if training is complete. Otherwise, continue the training process.

6. ~ = q -3.5/10000, and slepsize(n) is given by equation (1 1 ).

7. Apply a random input pattern to the network.

8. Calculate the change in weights AWU using equations (8) and (9).

9. Calculate the number of steps required, #stepi  using equations(12) and (1 3).

10. The total number of steps, #step(?okd)  = #stepa + #stepi.  If #,~~ep(total)  > MAXLEVEL

then set AWij* (= #stepi * stepsize(n) ) to 0. otherwise,  wdate  Wij and Xstepa..

This procedure will update all the weights for the added hidden neurons and the output bias

wcigh~~.

11. Go to 7, until the required application of number of iterations of the random patterns are

completed. The number of iterations can be decided depending upon the requirement of the
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problem and the time available. In our case, we used 6000 iterations as an outer loop, and

64 iterations as an inner loop for each pattern.

12. Calculate the error for all the patterns and evaluate for completion of training. If complete,

stop training, otherwise, calculate the energy E(n) and go to 4.

13 If the number of added hidden units is greater than 20, give up and quit.

7.1 d e  Ba~tlon (CBP) SlnuJ.aWms. . .

Using the above procedure, simulations for hardware were performed and the mean error and the

standard deviation of the error were obtained for the four cases, two with only the first order term,

with both round-off and truncation methods of conversion, and similarly the other two with the

second order term included. As expected, the simulation showed that including the second order

term made the errors go down considerably compamd to that with just the first order term. As a

nxult,  this lcd to an acceptable solution with reduced synaptic weight resolutions. The mean error

and the standard deviation curves for these four cases as an average of 10 runs are shown in

Figures 10(a-d) and 11 (a-d) respectively. Overall, the method showed tremendous tolerance to

reduced weight resolution and that with second order term included, the hardware with 2 7-bit

resolution performed as good as that with full floating point accuracy with about 12 neurons added

as hidden units. In addition, with the second order term included, the results with 6- and 7-bit

resolution had C1OSC to 10096 correctness, and even 5-bit resolution weights provided 80 to 90%

correctness. Table 2 summarizes these results of weight quantization  and the correctness Of the

solution in the four cases (out of 64 patterns).

----------------------------- -------------------------- --------------------------------------------------------------

Table 2. Percent of correct CBP learning runs for the 6-bit parity problem with variation

of synaptic weight resolution, using first order and second order terms in learning

algorithm, with round-off (F{O) and truncation (Tr) modes of weight value conversion)
------------------------------------ ----------------------------------- -----------------------------------------------

Percent correct, Percent correc~ Percent correct, percent corrwt,

First order (RO) First order (Tr) Second o.(RO) Second o(Tr)

5-bit weight Q 40%

6-bit weight Q 90%

7-bit weight Q

8-bit weight Q

9-bit weight Q

Floating point

00%

00%

00%

00%

10% 90% 80%

80% 100% 90%

80% 90% 1 00%

00% 1 00% 1 00%

00% 100% 1 00%

00% 100%I 1 00%
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--------------------  --------  -------------------- ------------------ -------------------- . --------- ---------------------”

8 . HARDWARE  IMPLEMENTATION WITH I. EARNING

A neural network hardwme system was assembled using the. analog neuron and synapse “building-

block” chips described in Section 4.1, a computer interface, and CBP learning algorithm (Figure

12). The hardware consisted of eight building-block chips: two synapse-neuron hybrid chips gave

a maximum of 64 neurons, two synapse-only chips completed this fully-parallel 64x64

architecture’s first seven bits of synaptic precision. The last four synapse chips paralleled the first

set of synapses in this network to allow larger d ynamic range in the weights (13 bits). A schematic

diagram showing the chip arrangement is given in Figure 13. The system was connected to a

personal computer, with parallel ports to access the digital weights, and analog converters to

program inputs and read outputs. An early version of the CBP algorithm was used, with first-

order learning dynamics and truncation of weights. The learning algorithm used all 13 bits of

precision (with the sign bits of each paralleled synapse pair tied together). Although the 13 bits

thus obtained did not necessarily increase monotonically, the stochastic nature of the analog

hardware evidently served to bridge nonmonotonicities sufficiently that learning could proceed.

The measumd input-output characteristics of one synapse-neuron pair is shown in Figure 14.

Two applications were tested, parity and a computation-intensive feature classification

problem. The 2-bit parity problem was taught to the network by adding hidden units until the

outputs were correct, exceeding a threshold of 3/5 full-range for a true and measuring below 2/5

for a false. This substantial noise margin at the output made it unlikely that noise levels would

cause a false reading. After each hidden unit wa.. added, 3000 backpropagation  trials were

executed, and network function was tested for correctness. A scatter plot of (binary) output as a

function of (analog) inputs showed a marked bias towards “true” outputs overall, although the

output was correct for the binary input representations (-Vmax, +Vmax) [24]. In most cases, 2-4

neurons were required as hidden units for all outputs to reach the criterion threshold levels.

The classification task, map separates, involves processing color map data (similar to

roadmaps)-  sampled at 24 bits per pixel- in order to determine the primary colors at each pixel.

Representing maps with 24 bits per pixel is grossly wasteful, since a map is printed with only

about eight colors, and thus, each pixel could be represented fully either by an 8-bit vector (if more

than one color can be associated with a pixel) or a 3-bit color identifier (if each pixel is to be

classified m only one color). Not only can storage requirements of maps can thus be reduced, but

automatic and manual operations applied to the map would bc greatly simplified if individual colors

(such as black and red, mostly representing roads) could be independently extracted for display or
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processing. This task is more difficult than it may appear, since large variations in hue and

intensity exist between maps, and even over one map. Furthermore, noise in the form of small dots

may need to be filte~d.  Thus, a network must take as input a window of pixels centered about the

particular pixel currently being processed. This application is well-suited to a fully-parallel neural

networks due to the massive number of maps (currently stored on videodisk and CD-ROM

memory) and the large number of pixels that need to be processed per map[70].

To map this problem into our hardware, a 3x3 window with 3 analog color intensities (i.e.

red, green, and blue) pcr pixel was applied to the 27 inputs of the network, once for each pixel in

our 305x200 map segment. The system was trained on a subset of the pixels that had been

classified by hand, using a precursor of the CBP algorithm in which first-order truncation

dynamics were used for weight mappings and error backpropagation,  and all weights were

adjusted at each step (rather than freezing all but the output layer). To validate the results, the error

was compamd with alternative classification methods, as shown in Table 3. Figure 15 shows the

original map data and the neural net hardware output after completion of hardware-in-the-loop

training. The hardware performed as well as the alternate classification algorithms running in

software.
------------------------------------------------------ ------- --------------.----------  -------------------------------

Table 3. A comparison of the accuracy of various data classification methods for the

given map-data classification problem.

class ifier Method AWuKU

Neural Network Simulation 91.2%

Neural Network Hardware 89.3%

K-nearest Neighbors 91.9%

Baysian-Unimodal Gaussian 89.8%
------------------------------------ ----------------------------------- -----------------------------------------------

The primary limitation to processing speed in this application was the conversion between

analog and digital domains at network input and output. Analog-to-digital conversion has

frequently been the primary limiting factor in throughput, although one can expect that low-cost,

high-speed video converters with sufficient dynamic range will soon become available.

9 . CONCLUSIONS
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Custom neural network hardware is appropriate, and in many cases required, for certain

applications. When the application requires realtime response that exceeds the capability of high-

end workstations, or when a mass-produced system that is not computer-based requires nontrivial

data processing, custom neural hardware may be highly cost-effcctivc.  Furthermore, there are

particular applications such as biological neural subsystenl emulation [18], associative memory

[71], and pattern matching [35] which beg a neural solution. But many general tasks can also be

carried out by neural systems. Indeed, we look forward to the day when easy-to-use neural

hardware “black boxes”, each appropriate for certain classes and siixx of architecture, are available

in much the same way that software objects capable of executing common (but perhaps spczialimd)

tasks arc coming into usc today.

Both analog and digital implementations have their place in today’s neural milieu. Digital

designs allow a greater flexibility in mapping arbitrary or extremely large problems onto a limited

number of time-multiplexed processing circuits, and no analog conversion is needed if inputs and

outputs are already in binary representations. Also, advances in fabrication technologies may

benefit digital implementations more so than analog. Analog circuits can be much smaller in sim

than digital, making it feasible to implement a fully parallel system of moderate size on one chip or

a chipset.  Taking advantage of physics, the circuits that aggregate signals at neuron inputs, which

are space-consuming in digital technologies, can be implemented essentially as wires in analog

technology. Also, while circuit noise may be considered by some to be the bane of analog

implementations, many learning algorithms benefit from a noise component that can shake the

weight configuration out of local minima. New techniques for obtaining larger silicon real-estate

show promise for constructing very large networks. Wafer-scale neural networks have already

been successfully constructed. It is only a matter of time until chip-stacking, which can be used to

efficiently implement 3-D topologies, is used for neural networks.

Control of the network is usually relegated to a general purpose computer. This allows

generality at a high level  - the particular training set, learning algorithm, compensation for network

flaws (such m malfunctioning output units), and the architecture that is mapped onto the resources

available in the custom hardware can all be fine-tuned by the user. However, the greater the

required lcaming  and operation throughput, the costlier this processing overhead becomes (a

phenomenon reminiscent of Amdahl’s  Law in computer engineering [72]). Thus, the highest

throughput can only be obtained by directly interfacing the hardware to the external inputs and

outputs, and implementing feedforward pass (and learning, if learning speed is critical) into a

custom hardware, at the cost of generality. This unfortunate tradeoff of generality versus

throughput may be somewhat ameliorated by implcmentinp,  programmable datapaths  and multiple

2 7



learning algorithms in digital irnplementations (at a significant space penalty), or

that allow a user wired-in flexibility over architecture in analog implementations.

by using chipsets

The current state of custom neural hardware technology allows single-chip systems to be

fabricated that have dozens of neurons and up to tens of thousands of synapses. A few specialized

wafer-scale systems have exceeded these numbers by an order of magnitude. While such systems

have been used to demonstrate a variety of interesting applications, only a handful of such

networks have been commercialized for specific applications. Much application-development work

has yet to be done before a niche for custom hardware earl be carved out, It is likely that a good

deal of this work must center on learning.

Learning algorithms are perhaps the “missing link” in the development of custom hardware

implementations. While much effort has gone into the analysis and development of learning

algorithms for computer-based neural simulations, relatively little work bass been directed toward

developing or adapting learning algorithms to be compatible with the limited precision (and analog-

system noise) inherent in hardwana Almost certainly, more work is needed in this direction before

custom neural hardware can become mainstream. It can be anticipated that the learning algorithms

used by biological systems will soon be more fully teased out, and that these algorithms will bc

profitably applied to hardwarv, especially to analog circuits.

Most learning algorithms in use today require a user to select the network architecture

before learning commences. Looking towards the goal of semi-autonomous “black-box” networks,

algorithms that automatically configure the network until a criterion level  of performance is reached

would be highly advantageous for hardware implementations. Two feed-forward learning

algorithms that add hidden-unit layers automatically are CC and our CBP method. We developed

CBP to simplify the hardware required for on-chip learning, and to allow learning with as few bits

of synaptic precision as possible. We have shown that CBP can work reliably with as few as five

bits of weight precision. To achieve this, a method for associating dynamic weight-update steps

was developed that may be applied to any cascade learning algorithm m long as each layer can

learn independently of the others.
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Figure 1 A schematic block diagram showing the synapse (square blocks) and neuron

(triangles) functions and signal flow. For maximum generality, outputs could be connected on-

chip to inputs, and a fccdforward network could be mapped onto this architecture by nulling

synapses leading from any layer to the neurons in the same or earlier layer(s).

Figure 2 Block diagram of a capacitor refresh 32 x 32 synapse chip showing arrangement of

individual synapse cells with signal flow, and row and column decoders.

Figure 3 A circuit diagram of a 7-bit digital-analog hybrid synapse CC1l  using scaled current

morrors to implement a monotonic programmable scaling circuit. The in.set shows schematically

the digital circuit for weight storage.

Figure4. Circuit diagram of a wide range variable gai n neuron with sigmoidal  transfer

characteristics. The stages of voltage to current conversion, comparator, and gain controllers are

shown. Input potential is kept constant to avoid capacitive charge delay, and the gain control stage

allows programming sigmoidal slope.

Figure 5 Conceptual diagram of a 3-dimensionally stacked multichip  module integrated with

a 2-D focal plane array. All the sensor array contacts are bump-bonded to the chip-stack under it.
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lntemonnections  (including controls and power) at the neural net chips am brought out along the

edges to the connecting busbars.

Figure 6 Circuit diagram for a high speed and compact variable gain neuron cell. A

feedforward time of <150  nanosecond per synapse-neuron pass is more than an order of

magnitude improvement over previous design with a 6-7 microseconds delay.

Figure 7 Synapse output current as a function of synaptic weights (*63 levels) with different
input voltages, Vin (1 .5, 1.9, 2.4, and 2.8 volts).

Figure 8 Synapse-neuron sigmoidal  transfer curves giving neuron output voltage as a

function of synaptic weights  (+63 levels) with neuron gain as a parameter.

Figure 9 A schematic diagram of a cascade backprop architecture showing added hidden

units. Synaptic weights arc shown as small rectangles where the filled rectangles signify that they

are frozen after completion of training, before the next hidden unit is added.

Figure 10 Mean error as a function of added hidden units with synaptic weight resolution as a

parameter for the cascade backpropagation  (CBP) learning simulation for hardware with (a) only

the first order weight update term and round-off (fob-) conversion; (b) first order term and

truncation (fo/t) conversion; (c) including second order tern] and round-off (so/r) conversion; and

(d) second order term and truncation (so/t) conversion methods.

Figure 11 Standard deviation as a function of added hidden units with synaptic weight

resolution as a parameter for the cascade backpropagation  (CBP) learning simulation for hardware

with (a) only the first order weight update term and round-off (fo/r) conversion; (b) first order

term and truncation (fo/t) conversion; (c) including second order term and round-off (so/r)

conversion; and (d) second orcler term and truncation (so/t) conversion methods.

Figure  12 A photograph of an eight chip board with 64x64, 13-bit synaptic array and 64

neurons connected to a host computer and configured as a fecdforward  net for solution of a map-

data classification problem with hardware-in-the-loop cascade backprop learning.

Figure 13 A schematic diagram showing 2 neuron-synapse and 6 synapse chips cascaded to

form a 64x64 reconfigurable neural network with nominally 13 biw of synaptic resolution.
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Figure 14 Synapse-neuron sigmoidal  transfer curves for the cascaded high nxolution synapse

arrangement with H(I96  levels

Figure 15 Map-data input (left ) and feature ckmified  output (right) for a 305x200-pixel map-

segment using the setup shown in Fig. 13. A training set of 2000 data-points was used, and the

neural network architecture consisted of 27 analog inputs for each 3x3-pixel window, each pixel

with 3 colors (RGB), each color with an 8-bit of resolution (256 levels). The output consisted of 7

different color outputs (<3 bi~s) assigned to each central pixel of the 3x3 window representing as

many different features on the map. The hardware solution with 89.3% accuracy was nearly as

good as that obtained using other feature classification methods in software ~rable  3).
---------------------------------------------------------------------- -------- -.------  . -------------------------
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CASCADED VLSI 64X 64 13-BIT SYNAPTIC ARRAY AND 64 NEURONS NEURAL
SYSTEM: HARDWARE LEARNING FOR IMAGE RECOGNITION AND CLASSIFICATION
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